1 개요[ | ]
- sklearn 단순선형회귀분석
2 예시 1: 키와 몸무게[ | ]
Python
CPU
1.5s
MEM
101M
1.5s
Copy
import pandas as pd
df = pd.DataFrame({
'height': [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83],
'mass': [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46],
})
X = df[['height']]
Y = df['mass']
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(X, Y)
print( "coefficient=", reg.coef_ )
print( "intercept=", reg.intercept_ )
print( "R²=", reg.score(X, Y) )
coefficient= [61.27218654] intercept= -39.06195591884392 R²= 0.9891969224457968
- → 회귀식 [math]\displaystyle{ y=61.27218654x-39.06195591884392 }[/math]
- → 결정계수 [math]\displaystyle{ R^2=0.9891969224457968 }[/math]
3 예시 2: 아이스티 주문[ | ]
Python
Copy
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/jmnote/z-dataset/master/simple-regression/iced-tea-orders.csv')
print( df )
X = df[['high_temperature']]
Y = df['order']
from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X, Y)
print( "coefficient=", reg.coef_ )
print( "intercept=", reg.intercept_ )
print( "R²=", reg.score(X, Y) )
Loading
- → 회귀식 [math]\displaystyle{ y=3.73788546x-36.361233480176196 }[/math]
- → 결정계수 [math]\displaystyle{ R^2=0.8225092881166944 }[/math]
4 같이 보기[ | ]
편집자 Jmnote Jmnote bot
로그인하시면 댓글을 쓸 수 있습니다.