1 개요[ | ]
- R IRT 3모수 모형
- R 문항반응이론 3PLM
- R 문항반응이론 3모수 모형
2 ltm 패키지[ | ]
Copy
# 계수
coef(model)
Loading
Copy
# 문항특성곡선
plot(model)
Loading
Copy
# 문항정보곡선
plot(model, "IIC")
Loading
3 irtplay 패키지[ | ]
R
Reload
Copy
df <- read.csv("https://raw.githubusercontent.com/jmnote/ds/main/github.com/cran/ltm/data/LSAT.csv")
library(irtplay)
model <- est_irt(data=df, model="3PLM", verbose=FALSE)
coef(model)
Loading
Copy
plotICC <- function(model) {
p1 <- model$estimates$par.1
p2 <- model$estimates$par.2
p3 <- model$estimates$par.3
p3[is.na(p3)] <- 0
D <- model$scale.D
z <- seq(-4, 4, length=100)
len <- nrow(model$estimates)
pos <- round(seq(10, 90, length=len))
for( i in 1:len ) {
f <- function(x) {p3[i]+(1-p3[i])*plogis(p1[i]*D*(x-p2[i]))}
if( i == 1 ) plot(z, f(z), type='l', col=i, ylim=c(0,1),
main="Item Characteristic Curves",
xlab="Ability", ylab="Probability")
else lines(z, f(z), type='l', col=i, ylim=c(0,1))
text(z[pos[i]], f(z[pos[i]]), adj=c(0,2), labels=c(paste('Item',i)), col=i)
}
}
plotICC(model)
Loading
4 같이 보기[ | ]
편집자 Jmnote
로그인하시면 댓글을 쓸 수 있습니다.