1 개요[ | ]
- 다변량분석의 한 방법
- 다수의 변수들을 소수의 요인(factor)으로 요약하는 기법
- 고차원의 데이터를 저차원의 데이터로 환원시키는 기법
- 여러 변수 사이의 공분산을 소수의 합성 변수로 설명하는 분석방법
- 다차원 공간내의 점을 보다 낮은 차원에 투영함으로써 변수가 갖는 정보의 손실을 최소화하여 원래의 변수보다 적은 수의 선형함수(주성분)로 나타내는 방법
- 여러 종류의 특성을 가지는 사상이 있는 경우, 측정된 데이터의 상호관련을 분석하여, 이것들의 특성을 서로 상관이 없는 몇 개의 총합특성값(주성분)에 합성 또는 요약하는 기법
- 확률변수벡터 X를 선형변환하여 X 분포정보를 포함하면서 성분 수는 적은 새 확률변수벡터 Y를 구성한다.
- Y와 상관이 0이고 X의 잔여분산을 잘 설명하는 요인을 순차적으로 도출한다.
- 선형관계만 축소 가능한다.[1]
- 특정 기준 이상의 설명력이 있는 주성분을 순서대로 선택하여 사용한다.
- 원래 데이터가 가진 변수보다 적은 수의 변수(주성분)을 사용하게 된다.
- 원래 데이터가 가진 분산 중 일부는 유실된다.
2 실습[ | ]
3 같이 보기[ | ]
4 참고[ | ]
- ↑ 반면, 비선형 관계는 autoencoder로 축소 가능하다.
편집자 Jmnote
로그인하시면 댓글을 쓸 수 있습니다.