가우스 소거법

1 개요[ | ]

Gaussian elimination, row reduction
Gauß消去法
가우스 소거법
  • 연립일차방정식을 풀이하는 알고리즘
  • 풀이 과정에서, 일부 미지수가 차츰 소거되어 결국 남은 미지수에 대한 선형 결합으로 표현되면서 풀이가 완성됨
  • 행렬식과 역행렬의 계산에도 활용됨

2 예시[ | ]

[math]\displaystyle{ \left[\begin{array}{rrr|r} 1 & 3 & 1 & 9 \\ 1 & 1 & -1 & 1 \\ 3 & 11 & 5 & 35 \end{array}\right]\to \left[\begin{array}{rrr|r} 1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 2 & 2 & 8 \end{array}\right]\to \left[\begin{array}{rrr|r} 1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 0 & 0 & 0 \end{array}\right]\to \left[\begin{array}{rrr|r} 1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array}\right] }[/math]

3 같이 보기[ | ]

4 참고[ | ]

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}