"R 2모수 모형"의 두 판 사이의 차이

 
(사용자 2명의 중간 판 16개는 보이지 않습니다)
5번째 줄: 5번째 줄:


==ltm 패키지==
==ltm 패키지==
<syntaxhighlight lang='r' run hideerr>
<syntaxhighlight lang='r' notebook=ltm hideerr>
df <- read.csv("https://github.com/jmnote/zdata/raw/master/github.com/cran/ltm/data/LSAT.csv")
df <- read.csv("https://raw.githubusercontent.com/jmnote/ds/main/github.com/cran/ltm/data/LSAT.csv")
library(ltm)
library(ltm)
model <- ltm(df ~ z1)
model <- ltm(df ~ z1)
# 로그우도
model$log.Lik
</syntaxhighlight>
<syntaxhighlight lang='r' notebook=ltm>
# 계수
coef(model)
coef(model)
</syntaxhighlight>
<syntaxhighlight lang='r' notebook=ltm>
# 문항특성곡선
plot(model)
</syntaxhighlight>
<syntaxhighlight lang='r' notebook=ltm>
# 문항정보곡선
plot(model, "IIC")
</syntaxhighlight>
</syntaxhighlight>


==irtplay 패키지==
==irtplay 패키지==
<syntaxhighlight lang='r' run>
<syntaxhighlight lang='r' notebook=irtplay>
df <- read.csv("https://github.com/jmnote/zdata/raw/master/github.com/cran/ltm/data/LSAT.csv")
df <- read.csv("https://raw.githubusercontent.com/jmnote/ds/main/github.com/cran/ltm/data/LSAT.csv")
library(irtplay)
library(irtplay)
model <- est_irt(data=df, model="2PLM", verbose=FALSE)
model <- est_irt(data=df, model="2PLM", verbose=FALSE)
coef(model)
coef(model)
</syntaxhighlight>
<syntaxhighlight lang='r' notebook=irtplay>
plotICC <- function(model) {
  p1 <- model$estimates$par.1
  p2 <- model$estimates$par.2
  p3 <- model$estimates$par.3
  p3[is.na(p3)] <- 0
  D <- model$scale.D
  z <- seq(-4, 4, length=100)
  len <- nrow(model$estimates)
  pos <- round(seq(10, 90, length=len))
  for( i in 1:len ) {
    f <- function(x) {p3[i]+(1-p3[i])*plogis(p1[i]*D*(x-p2[i]))}
    if( i == 1 ) plot(z, f(z), type='l', col=i, ylim=c(0,1),
                      main="Item Characteristic Curves",
                      xlab="Ability", ylab="Probability")
    else lines(z, f(z), type='l', col=i, ylim=c(0,1))
    text(z[pos[i]], f(z[pos[i]]), adj=c(0,2), labels=c(paste('Item',i)), col=i)
  }
}
plotICC(model)
</syntaxhighlight>
</syntaxhighlight>



2024년 1월 3일 (수) 11:42 기준 최신판

1 개요[ | ]

R IRT 2모수 모형
R 문항반응이론 2PLM
R 문항반응이론 2모수 모형

2 ltm 패키지[ | ]

df <- read.csv("https://raw.githubusercontent.com/jmnote/ds/main/github.com/cran/ltm/data/LSAT.csv")
library(ltm)
model <- ltm(df ~ z1)

# 로그우도
model$log.Lik
# 계수
coef(model)
# 문항특성곡선
plot(model)
# 문항정보곡선
plot(model, "IIC")

3 irtplay 패키지[ | ]

df <- read.csv("https://raw.githubusercontent.com/jmnote/ds/main/github.com/cran/ltm/data/LSAT.csv")
library(irtplay)
model <- est_irt(data=df, model="2PLM", verbose=FALSE)
coef(model)
plotICC <- function(model) {
  p1 <- model$estimates$par.1
  p2 <- model$estimates$par.2
  p3 <- model$estimates$par.3
  p3[is.na(p3)] <- 0
  D <- model$scale.D
  z <- seq(-4, 4, length=100)
  len <- nrow(model$estimates)
  pos <- round(seq(10, 90, length=len))
  for( i in 1:len ) {
    f <- function(x) {p3[i]+(1-p3[i])*plogis(p1[i]*D*(x-p2[i]))}
    if( i == 1 ) plot(z, f(z), type='l', col=i, ylim=c(0,1),
                      main="Item Characteristic Curves",
                      xlab="Ability", ylab="Probability")
    else lines(z, f(z), type='l', col=i, ylim=c(0,1))
    text(z[pos[i]], f(z[pos[i]]), adj=c(0,2), labels=c(paste('Item',i)), col=i)
  }
}
plotICC(model)

4 같이 보기[ | ]

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}