1 개요[ | ]
- R multinom()
- "Fit Multinomial Log-Linear Models"
R
CPU
0.4s
MEM
72M
0.5s
Copy
options(echo = TRUE)
oc <- options(contrasts = c("contr.treatment", "contr.poly"))
library(MASS)
example(birthwt)
library(nnet)
(bwt.mu <- multinom(low ~ ., bwt))
options(oc)
> oc <- options(contrasts = c("contr.treatment", "contr.poly")) > library(MASS) > example(birthwt) brthwt> bwt <- with(birthwt, { brthwt+ race <- factor(race, labels = c("white", "black", "other")) brthwt+ ptd <- factor(ptl > 0) brthwt+ ftv <- factor(ftv) brthwt+ levels(ftv)[-(1:2)] <- "2+" brthwt+ data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0), brthwt+ ptd, ht = (ht > 0), ui = (ui > 0), ftv) brthwt+ }) brthwt> options(contrasts = c("contr.treatment", "contr.poly")) brthwt> glm(low ~ ., binomial, bwt) Call: glm(formula = low ~ ., family = binomial, data = bwt) Coefficients: (Intercept) age lwt raceblack raceother smokeTRUE 0.82302 -0.03723 -0.01565 1.19241 0.74068 0.75553 ptdTRUE htTRUE uiTRUE ftv1 ftv2+ 1.34376 1.91317 0.68020 -0.43638 0.17901 Degrees of Freedom: 188 Total (i.e. Null); 178 Residual Null Deviance: 234.7 Residual Deviance: 195.5 AIC: 217.5 > library(nnet) > (bwt.mu <- multinom(low ~ ., bwt)) # weights: 12 (11 variable) initial value 131.004817 iter 10 value 98.029803 final value 97.737759 converged Call: multinom(formula = low ~ ., data = bwt) Coefficients: (Intercept) age lwt raceblack raceother smokeTRUE 0.82320102 -0.03723828 -0.01565359 1.19240391 0.74065606 0.75550487 ptdTRUE htTRUE uiTRUE ftv1 ftv2+ 1.34375901 1.91320116 0.68020207 -0.43638470 0.17900392 Residual Deviance: 195.4755 AIC: 217.4755 > options(oc) > cat('
2 같이 보기[ | ]
3 참고[ | ]
편집자 Jmnote
로그인하시면 댓글을 쓸 수 있습니다.