1 개요[ | ]
- R confusionMatrix()
- 혼동행렬을 만드는 R 함수
2 전체 정보 조회[ | ]
R
CPU
3.1s
MEM
206M
3.4s
Copy
library(caret) # confusionMatrix()
t <- as.table(rbind(c(231, 32), c(27, 54)))
dimnames(t) <- list(pred = c("abnormal", "normal"), truth = c("abnormal", "normal"))
confusionMatrix(t)
Loading required package: lattice Loading required package: ggplot2 Confusion Matrix and Statistics truth pred abnormal normal abnormal 231 32 normal 27 54 Accuracy : 0.8285 95% CI : (0.7844, 0.8668) No Information Rate : 0.75 P-Value [Acc > NIR] : 0.0003097 Kappa : 0.5336 Mcnemar's Test P-Value : 0.6025370 Sensitivity : 0.8953 Specificity : 0.6279 Pos Pred Value : 0.8783 Neg Pred Value : 0.6667 Prevalence : 0.7500 Detection Rate : 0.6715 Detection Prevalence : 0.7645 Balanced Accuracy : 0.7616 'Positive' Class : abnormal
R
Copy
library(caret) # confusionMatrix()
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs))
pred <- factor(
c(rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))),
levels = rev(lvs))
confusionMatrix(pred, truth)
Loading
R
Copy
library(caret) # confusionMatrix()
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs))
pred <- factor(
c(rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))),
levels = rev(lvs))
xtab <- table(pred, truth)
confusionMatrix(xtab)
Loading
3 특정값만 추출 ★[ | ]
R
Copy
library(caret) # confusionMatrix()
t <- as.table(rbind(c(231, 32), c(27, 54)))
dimnames(t) <- list(pred = c("abnormal", "normal"), truth = c("abnormal", "normal"))
cm <- confusionMatrix(t)
cm$overall["Accuracy"]
cm$byClass["Sensitivity"]
cm$byClass["Specificity"]
cm$byClass["Specificity"]
cm$byClass["Precision"]
cm$byClass["Recall"]
Loading
4 같이 보기[ | ]
5 참고[ | ]
편집자 Jmnote
로그인하시면 댓글을 쓸 수 있습니다.