페리 수열

1 개요[ | ]

Farey sequence
페리 수열, 패리 수열
  • 0, 1, 그 사이에 있는 분모가 어떤 자연수 n 을 넘지 않는 기약진분수를 오름차순으로 나열한 수열
  • [math]\displaystyle{ F_n: 0 \le h \le k \le n }[/math]이고 [math]\displaystyle{ \gcd(h,k)=1 }[/math]을 만족하는 [math]\displaystyle{ \dfrac{h}{k} }[/math]를 오름차순으로 나열한 수열

2[ | ]

n=1…8까지의 페리 수열

[math]\displaystyle{ F_1 = \left\{ \dfrac{0}{1}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_2 = \left\{ \dfrac{0}{1}, \dfrac{1}{2}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_3 = \left\{ \dfrac{0}{1}, \dfrac{1}{3}, \dfrac{1}{2}, \dfrac{2}{3}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_4 = \left\{ \dfrac{0}{1}, \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{1}{2}, \dfrac{2}{3}, \dfrac{3}{4}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_5 = \left\{ \dfrac{0}{1}, \dfrac{1}{5}, \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{2}{5}, \dfrac{1}{2}, \dfrac{3}{5}, \dfrac{2}{3}, \dfrac{3}{4}, \dfrac{4}{5}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_6 = \left\{ \dfrac{0}{1}, \dfrac{1}{6}, \dfrac{1}{5}, \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{2}{5}, \dfrac{1}{2}, \dfrac{3}{5}, \dfrac{2}{3}, \dfrac{3}{4}, \dfrac{4}{5}, \dfrac{5}{6}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_7 = \left\{ \dfrac{0}{1}, \dfrac{1}{7}, \dfrac{1}{6}, \dfrac{1}{5}, \dfrac{1}{4}, \dfrac{2}{7}, \dfrac{1}{3}, \dfrac{2}{5}, \dfrac{3}{7}, \dfrac{1}{2}, \dfrac{4}{7}, \dfrac{3}{5}, \dfrac{2}{3}, \dfrac{5}{7}, \dfrac{3}{4}, \dfrac{4}{5}, \dfrac{5}{6}, \dfrac{6}{7}, \dfrac{1}{1} \right\} }[/math]
[math]\displaystyle{ F_8 = \left\{ \dfrac{0}{1}, \dfrac{1}{8}, \dfrac{1}{7}, \dfrac{1}{6}, \dfrac{1}{5}, \dfrac{1}{4}, \dfrac{2}{7}, \dfrac{1}{3}, \dfrac{3}{8}, \dfrac{2}{5}, \dfrac{3}{7}, \dfrac{1}{2}, \dfrac{4}{7}, \dfrac{3}{5}, \dfrac{5}{8}, \dfrac{2}{3}, \dfrac{5}{7}, \dfrac{3}{4}, \dfrac{4}{5}, \dfrac{5}{6}, \dfrac{6}{7}, \dfrac{7}{8}, \dfrac{1}{1} \right\} }[/math]

3 같이 보기[ | ]

4 참고[ | ]

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}