1 개요[ | ]
- R 분할표
2 빈도를 세야 하는 경우[ | ]
성별×선호색상
R
Copy
cases <- read.table( header=TRUE, stringsAsFactors=FALSE, text="
Sex Color
M blue
F brown
F brown
F brown
M brown
")
table(cases)
Loading
3 빈도가 계산된 경우[ | ]
3.1 xtabs()[ | ]
성별×선호색상
R
Copy
counts <- read.table( header=TRUE, stringsAsFactors=FALSE, text="
Sex Color Freq
F blue 0
M blue 1
F brown 3
M brown 1
")
xtabs(Freq ~ Sex+Color, data=counts)
Loading
성별×손쓰임
R
Copy
counts <- read.table( header=TRUE, stringsAsFactors=FALSE, text="
Gender Handedness Freq
Male Right 43
Male Left 9
Female Right 44
Female Left 4
")
xtabs(Freq ~ Gender+Handedness, data=counts)
Loading
성별×지지정당
R
Copy
counts <- read.table( header=TRUE, stringsAsFactors=FALSE, text="
gender party freq
M Democrat 484
M Independent 239
M Republican 477
F Democrat 762
F Independent 327
F Republican 468
")
xtabs(freq ~ gender+party, data=counts)
Loading
3.2 as.table()[ | ]
성별×손쓰임
R
Copy
t <- as.table(rbind(c(43, 9), c(44, 4)))
dimnames(t) <- list(Gender = c("Male", "Female"), Handedness = c("Right","Left"))
t
Loading
성별×지지정당
R
Copy
t <- as.table(rbind(c(762, 327, 468), c(484, 239, 477)))
dimnames(t) <- list(gender = c("F", "M"), party = c("Democrat","Independent", "Republican"))
t
Loading
4 같이 보기[ | ]
편집자 Jmnote
로그인하시면 댓글을 쓸 수 있습니다.