R lm()

Jmnote (토론 | 기여)님의 2019년 5월 10일 (금) 21:10 판

1 개요

R lm()
  • "linear model"
R
Copy
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)
relation
## 
## Call:
## lm(formula = y ~ x)
## 
## Coefficients:
## (Intercept)            x  
##    -38.4551       0.6746  

summary(relation)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3002 -1.6629  0.0412  1.8944  3.9775 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -38.45509    8.04901  -4.778  0.00139 ** 
## x             0.67461    0.05191  12.997 1.16e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.253 on 8 degrees of freedom
## Multiple R-squared:  0.9548,	Adjusted R-squared:  0.9491 
## F-statistic: 168.9 on 1 and 8 DF,  p-value: 1.164e-06


R
Copy
library(MASS)
data(hills)
attach(hills)
md <- lm( time ~ dist + climb)
summary(md)
## 
## Call:
## lm(formula = time ~ dist + climb)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.215  -7.129  -1.186   2.371  65.121 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -8.992039   4.302734  -2.090   0.0447 *  
## dist         6.217956   0.601148  10.343 9.86e-12 ***
## climb        0.011048   0.002051   5.387 6.45e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.68 on 32 degrees of freedom
## Multiple R-squared:  0.9191,	Adjusted R-squared:  0.914 
## F-statistic: 181.7 on 2 and 32 DF,  p-value: < 2.2e-16
R
Copy
fit4 <- lm(Fertility ~ Agriculture + Education + Catholic + Infant.Mortality, data = swiss)
summary(fit4)
## 
## Call:
## lm(formula = Fertility ~ Agriculture + Education + Catholic + 
##     Infant.Mortality, data = swiss)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.6765  -6.0522   0.7514   3.1664  16.1422 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      62.10131    9.60489   6.466 8.49e-08 ***
## Agriculture      -0.15462    0.06819  -2.267  0.02857 *  
## Education        -0.98026    0.14814  -6.617 5.14e-08 ***
## Catholic          0.12467    0.02889   4.315 9.50e-05 ***
## Infant.Mortality  1.07844    0.38187   2.824  0.00722 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.168 on 42 degrees of freedom
## Multiple R-squared:  0.6993,	Adjusted R-squared:  0.6707 
## F-statistic: 24.42 on 4 and 42 DF,  p-value: 1.717e-10##

2 같이 보기

3 참고