회귀분석 제곱합 분할 증명

Jmnote (토론 | 기여)님의 2012년 2월 5일 (일) 01:33 판 (새 문서: ==문제== <math>\sum (Y_i-\overline{Y})^2 = \sum (\hat{Y_i}-\overline{Y})^2 + \sum (Y_i-\hat{Y_i})^2</math>임을 증명하라. :(<math>SS_{total} = SS_{regression} + SS_{error}</mat...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)

1 문제

[math]\displaystyle{ \sum (Y_i-\overline{Y})^2 = \sum (\hat{Y_i}-\overline{Y})^2 + \sum (Y_i-\hat{Y_i})^2 }[/math]임을 증명하라.

([math]\displaystyle{ SS_{total} = SS_{regression} + SS_{error} }[/math])

2 증명

[math]\displaystyle{ \sum_{i = 1}^n (Y_i - \overline{Y})^2 }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n (Y_i - \overline{Y} + \hat{Y}_i - \hat{Y}_i)^2 }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n ((\hat{Y}_i - \overline{Y}) + (Y_i - \hat{Y}_i))^2 }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n ((\hat{Y}_i - \overline{Y})^2 + (Y_i - \hat{Y}_i)^2 + 2 (Y_i - \hat{Y}_i) (\hat{Y}_i - \overline{Y})) }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n (\hat{Y}_i - \overline{Y})^2 + \sum_{i = 1}^n (Y_i - \hat{Y}_i)^2 + 2 \sum_{i = 1}^n (Y_i - \hat{Y}_i) (\hat{Y}_i - \overline{Y}) }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n (\hat{Y}_i - \overline{Y})^2 }[/math] [math]\displaystyle{ + \sum_{i = 1}^n (Y_i - \hat{Y}_i)^2 }[/math] [math]\displaystyle{ + 2 \sum_{i = 1}^n (Y_i - \hat{Y}_i)(\beta_0 + \beta_1 X_i - \overline{Y}) }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n (\hat{Y}_i - \overline{Y})^2 + \sum_{i = 1}^n (Y_i - \hat{Y}_i)^2 + 2 ( \beta_0 \sum_{i = 1}^n (Y_i - \hat{Y}_i) }[/math] [math]\displaystyle{ + \beta_1 \sum_{i = 1}^n (Y_i - \hat{Y}_i) X_i - \overline{Y} \sum_{i = 1}^n (Y_i - \hat{Y}_i)) }[/math]

[math]\displaystyle{ = \sum_{i = 1}^n (\hat{Y}_i - \overline{Y})^2 + \sum_{i = 1}^n (Y_i - \hat{Y}_i)^2 }[/math]

[math]\displaystyle{ \because \sum_{i = 1}^n (Y_i - \hat{Y_i}) = \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) = 0 }[/math]

and [math]\displaystyle{ \sum_{i = 1}^n (Y_i - \hat{Y_i}) X_i = \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) X_i = 0 }[/math]

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}