"R 랜덤 포레스트"의 두 판 사이의 차이

16번째 줄: 16번째 줄:


# 모델 적합
# 모델 적합
library(randomForest, quietly=T)
library(randomForest, warn.conflict=F)
model = randomForest(ploidy ~ ., trainData, ntree=100, proximity=T)
model = randomForest(ploidy ~ ., trainData, ntree=100, proximity=T)



2020년 5월 9일 (토) 00:14 판

1 개요

R Random Forest
R 랜덤 포레스트
set.seed(42) # 랜덤값 고정
library(rpart) # stagec
df = stagec
df = na.omit(df) # 결측치 제거

# 데이터 분할
library(caret, quietly=T)
idx = createDataPartition(df$ploidy, p=0.7, list=FALSE)
trainData = df[ idx,]
testData  = df[-idx,]

# 모델 적합
library(randomForest, warn.conflict=F)
model = randomForest(ploidy ~ ., trainData, ntree=100, proximity=T)

options(echo=T)
# 모델 정보
model
model$importance

# 시각화
plot(model)

# 테스트
pred = predict(model, testData)
# 분류표
table(pred, testData$ploidy)
# 정분류율
sum(pred==testData$ploidy)/nrow(testData)

2 같이 보기

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}