"근과 계수의 관계"의 두 판 사이의 차이

4번째 줄: 4번째 줄:


==유도==
==유도==
<math>ax^2+bx+c=0</math>의 두 근 <math>\alpha, \beta</math>는 각각
:<math>\alpha + \beta = \frac {-b-b+\sqrt {b^2-4ac\ }-\sqrt {b^2-4ac\ }}{2a}</math>
:<math>\alpha + \beta = \frac {-b-b+\sqrt {b^2-4ac\ }-\sqrt {b^2-4ac\ }}{2a}</math>
:<math>\alpha + \beta = \frac {-2b}{2a}</math><br />
:<math>\alpha + \beta = \frac {-2b}{2a}</math><br />

2012년 5월 15일 (화) 10:58 판

근과 계수의 관계
[math]\displaystyle{ ax^2 + bx + c = 0 , \quad a \ne 0 }[/math]

1 유도

[math]\displaystyle{ \alpha + \beta = \frac {-b-b+\sqrt {b^2-4ac\ }-\sqrt {b^2-4ac\ }}{2a} }[/math]
[math]\displaystyle{ \alpha + \beta = \frac {-2b}{2a} }[/math]
[math]\displaystyle{ \therefore \alpha + \beta =-\frac {b}{a} }[/math]

[math]\displaystyle{ \alpha \beta =\frac {b^2-(\sqrt {b^2-4ac\ })^2}{(2a)^2} }[/math]
[math]\displaystyle{ \alpha \beta =\frac {b^2-b^2+4ac}{4a^2} }[/math]
[math]\displaystyle{ \alpha \beta =\frac {4ac}{4a^2} }[/math]
[math]\displaystyle{ \therefore \alpha \beta =\frac {c}{a} }[/math]
[math]\displaystyle{ \left| \alpha - \beta \right| = \left| \frac {-b+\sqrt {b^2-4ac\ }+b+\sqrt {b^2-4ac\ }}{2a} \right| }[/math]
[math]\displaystyle{ \left| \alpha - \beta \right| = \left| \frac {2\sqrt {b^2-4ac\ }}{2a} \right| }[/math]
[math]\displaystyle{ \therefore \left| \alpha - \beta \right| = \frac {\sqrt{b^2-4ac\ }}{\left| a \right|} }[/math]

2 참고 자료

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}