"자기회귀누적이동평균 ARIMA"의 두 판 사이의 차이

14번째 줄: 14번째 줄:


==같이 보기==
==같이 보기==
* [[ARIMA(1, 0, 0)]]
* [[ARIMA(0, 1, 0)]]
* [[ARIMA(1, 1, 0)]]
* [[ARIMA(0, 1, 1)]]
* [[자기회귀]]
* [[자기회귀]]
* [[X-12-ARIMA]]
* [[X-12-ARIMA]]

2020년 12월 19일 (토) 16:46 판

1 개요

autoregressive integrated moving average (ARIMA), ARIMA model
자기회귀 누적이동평균, 자기회귀 누적이동평균 모형, ARIMA 모형
  • 자기회귀이동평균(ARMA) 모형의 일반화

2 예시

Some well-known special cases arise naturally or are mathematically equivalent to other popular forecasting models. For example:

  • An ARIMA(0, 1, 0) model (or I(1) model) is given by [math]\displaystyle{ X_t = X_{t-1} + \varepsilon_t }[/math] — which is simply a random walk.
  • An ARIMA(0, 1, 0) with a constant, given by [math]\displaystyle{ X_t = c + X_{t-1} + \varepsilon_t }[/math] — which is a random walk with drift.
  • An ARIMA(0, 0, 0) model is a white noise model.
  • An ARIMA(0, 1, 2) model is a Damped Holt's model.
  • An ARIMA(0, 1, 1) model without constant is a basic exponential smoothing model.[1]
  • An ARIMA(0, 2, 2) model is given by [math]\displaystyle{ X_t = 2X_{t-1} - X_{t-2} +(\alpha + \beta - 2) \varepsilon_{t-1} + (1-\alpha)\varepsilon_{t-2} + \varepsilon_{t} }[/math] — which is equivalent to Holt's linear method with additive errors, or double exponential smoothing.[1]

3 같이 보기

4 참고

  1. 1.0 1.1 “Introduction to ARIMA models”. 《people.duke.edu》. 2016년 6월 5일에 확인함. 
문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}