"DC Introduction to R - Factors"의 두 판 사이의 차이

 
19번째 줄: 19번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=1
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=1
<source lang='r'>
<source lang='r'>
# Assign to the variable theory what this chapter is about!
theory <- "factors for categorical variables"
</source>
</source>


24번째 줄: 26번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=2
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=2
<source lang='r'>
<source lang='r'>
# Sex vector
sex_vector <- c("Male", "Female", "Female", "Male", "Male")
# Convert sex_vector to a factor
factor_sex_vector <- factor(sex_vector)
# Print out factor_sex_vector
print(factor_sex_vector)
# [1] Male  Female Female Male  Male 
# Levels: Female Male
</source>
</source>


29번째 줄: 41번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=3
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=3
<source lang='r'>
<source lang='r'>
# Animals
animals_vector <- c("Elephant", "Giraffe", "Donkey", "Horse")
factor_animals_vector <- factor(animals_vector)
factor_animals_vector
#[1] Elephant Giraffe  Donkey  Horse 
#Levels: Donkey Elephant Giraffe Horse
# Temperature
temperature_vector <- c("High", "Low", "High","Low", "Medium")
factor_temperature_vector <- factor(temperature_vector, order = TRUE, levels = c("Low", "Medium", "High"))
factor_temperature_vector
#[1] High  Low    High  Low    Medium
#Levels: Low < Medium < High
</source>
</source>


34번째 줄: 59번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=4
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=4
<source lang='r'>
<source lang='r'>
# Code to build factor_survey_vector
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
# Specify the levels of factor_survey_vector
levels(factor_survey_vector) <- c("Female", "Male")
factor_survey_vector
#[1] Male  Female Female Male  Male 
#Levels: Female Male
</source>
</source>


39번째 줄: 74번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=5
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=5
<source lang='r'>
<source lang='r'>
# Build factor_survey_vector with clean levels
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
levels(factor_survey_vector) <- c("Female", "Male")
factor_survey_vector
#[1] Male  Female Female Male  Male 
#Levels: Female Male
# Generate summary for survey_vector
summary(survey_vector)
#  Length    Class      Mode
#        5 character character
# Generate summary for factor_survey_vector
summary(factor_survey_vector)
#Female  Male
#    2      3
</source>
</source>


44번째 줄: 96번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=6
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=6
<source lang='r'>
<source lang='r'>
# Build factor_survey_vector with clean levels
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
levels(factor_survey_vector) <- c("Female", "Male")
# Male
male <- factor_survey_vector[1]
# Female
female <- factor_survey_vector[2]
# Battle of the sexes: Male 'larger' than female?
male > female
#[1] NA
#
#Warning message:
#In Ops.factor(male, female) : '>' not meaningful for factors
</source>
</source>


49번째 줄: 118번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=7
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=7
<source lang='r'>
<source lang='r'>
# Create speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")
</source>
</source>


54번째 줄: 125번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=8
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=8
<source lang='r'>
<source lang='r'>
# Create speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")
# Convert speed_vector to ordered factor vector
factor_speed_vector <- factor(speed_vector, ordered = TRUE, level = c("slow", "medium", "fast"))
# Print factor_speed_vector
factor_speed_vector
#[1] medium slow  slow  medium fast 
#Levels: slow < medium < fast
summary(factor_speed_vector)
#  slow medium  fast
#    2      2      1
</source>
</source>


59번째 줄: 144번째 줄:
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=9
* https://campus.datacamp.com/courses/free-introduction-to-r/chapter-4-factors-4?ex=9
<source lang='r'>
<source lang='r'>
# Create factor_speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")
factor_speed_vector <- factor(speed_vector, ordered = TRUE, levels = c("slow", "medium", "fast"))
# Factor value for second data analyst
da2 <- factor_speed_vector[2]
# Factor value for fifth data analyst
da5 <- factor_speed_vector[5]
# Is data analyst 2 faster than data analyst 5?
da2 > da5
#[1] FALSE
</source>
</source>

2019년 4월 6일 (토) 02:10 기준 최신판

# DC Introduction to R
DC Introduction to R - Intro to basics
DC Introduction to R - Vectors
DC Introduction to R - Matrices
DC Introduction to R - Factors
DC Introduction to R - Data frames
DC Introduction to R - Lists

1 What's a factor and why would you use it?[ | ]

# Assign to the variable theory what this chapter is about!
theory <- "factors for categorical variables"

2 What's a factor and why would you use it? (2)[ | ]

# Sex vector
sex_vector <- c("Male", "Female", "Female", "Male", "Male")

# Convert sex_vector to a factor
factor_sex_vector <- factor(sex_vector)

# Print out factor_sex_vector
print(factor_sex_vector)
# [1] Male   Female Female Male   Male  
# Levels: Female Male

3 What's a factor and why would you use it? (3)[ | ]

# Animals
animals_vector <- c("Elephant", "Giraffe", "Donkey", "Horse")
factor_animals_vector <- factor(animals_vector)
factor_animals_vector
#[1] Elephant Giraffe  Donkey   Horse   
#Levels: Donkey Elephant Giraffe Horse

# Temperature
temperature_vector <- c("High", "Low", "High","Low", "Medium")
factor_temperature_vector <- factor(temperature_vector, order = TRUE, levels = c("Low", "Medium", "High"))
factor_temperature_vector
#[1] High   Low    High   Low    Medium
#Levels: Low < Medium < High

4 Factor levels[ | ]

# Code to build factor_survey_vector
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)

# Specify the levels of factor_survey_vector
levels(factor_survey_vector) <- c("Female", "Male")

factor_survey_vector
#[1] Male   Female Female Male   Male  
#Levels: Female Male

5 Summarizing a factor[ | ]

# Build factor_survey_vector with clean levels
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
levels(factor_survey_vector) <- c("Female", "Male")
factor_survey_vector
#[1] Male   Female Female Male   Male  
#Levels: Female Male

# Generate summary for survey_vector
summary(survey_vector)
#   Length     Class      Mode 
#        5 character character 

# Generate summary for factor_survey_vector
summary(factor_survey_vector)
#Female   Male 
#     2      3

6 Battle of the sexes[ | ]

# Build factor_survey_vector with clean levels
survey_vector <- c("M", "F", "F", "M", "M")
factor_survey_vector <- factor(survey_vector)
levels(factor_survey_vector) <- c("Female", "Male")

# Male
male <- factor_survey_vector[1]

# Female
female <- factor_survey_vector[2]

# Battle of the sexes: Male 'larger' than female?
male > female
#[1] NA
#
#Warning message:
#In Ops.factor(male, female) : '>' not meaningful for factors

7 Ordered factors[ | ]

# Create speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")

8 Ordered factors (2)[ | ]

# Create speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")

# Convert speed_vector to ordered factor vector
factor_speed_vector <- factor(speed_vector, ordered = TRUE, level = c("slow", "medium", "fast"))

# Print factor_speed_vector
factor_speed_vector
#[1] medium slow   slow   medium fast  
#Levels: slow < medium < fast

summary(factor_speed_vector)
#  slow medium   fast 
#     2      2      1

9 Comparing ordered factors[ | ]

# Create factor_speed_vector
speed_vector <- c("medium", "slow", "slow", "medium", "fast")
factor_speed_vector <- factor(speed_vector, ordered = TRUE, levels = c("slow", "medium", "fast"))

# Factor value for second data analyst
da2 <- factor_speed_vector[2]

# Factor value for fifth data analyst
da5 <- factor_speed_vector[5]

# Is data analyst 2 faster than data analyst 5?
da2 > da5
#[1] FALSE
문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}