"R lm()"의 두 판 사이의 차이

잔글 (Jmnote님이 R언어 lm() 문서를 R lm() 문서로 이동하면서 넘겨주기를 덮어썼습니다)
1번째 줄: 1번째 줄:
==개요==
==개요==
;R lm()
;R lm()
* "linear model"


<source lang='r'>
<source lang='r'>

2019년 5월 10일 (금) 20:54 판

1 개요

R lm()
  • "linear model"
R
Copy
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)
relation
## 
## Call:
## lm(formula = y ~ x)
## 
## Coefficients:
## (Intercept)            x  
##    -38.4551       0.6746  

summary(relation)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3002 -1.6629  0.0412  1.8944  3.9775 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -38.45509    8.04901  -4.778  0.00139 ** 
## x             0.67461    0.05191  12.997 1.16e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.253 on 8 degrees of freedom
## Multiple R-squared:  0.9548,	Adjusted R-squared:  0.9491 
## F-statistic: 168.9 on 1 and 8 DF,  p-value: 1.164e-06


R
Copy
library(MASS)
data(hills)
attach(hills)
md <- lm( time ~ dist + climb)
summary(md)
## 
## Call:
## lm(formula = time ~ dist + climb)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.215  -7.129  -1.186   2.371  65.121 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -8.992039   4.302734  -2.090   0.0447 *  
## dist         6.217956   0.601148  10.343 9.86e-12 ***
## climb        0.011048   0.002051   5.387 6.45e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.68 on 32 degrees of freedom
## Multiple R-squared:  0.9191,	Adjusted R-squared:  0.914 
## F-statistic: 181.7 on 2 and 32 DF,  p-value: < 2.2e-16

2 같이 보기

3 참고