"황금비"의 두 판 사이의 차이

 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
8번째 줄: 8번째 줄:
* (황금분할) 황금비로 선분 면 등으 분할하는 것
* (황금분할) 황금비로 선분 면 등으 분할하는 것
* 어떠한 선으로 이등분하여 한쪽의 평방을 다른쪽 전체의 면적과 같도록 하는 분할
* 어떠한 선으로 이등분하여 한쪽의 평방을 다른쪽 전체의 면적과 같도록 하는 분할
 
* 기호: 피 ( <math>\varphi</math> 또는 <math>\phi</math> )
* 약 1.618인 무리수
* 약 1.618인 무리수
* 초기 연구자는 유클리드(원론 3, 141)
* 초기 연구자는 유클리드(원론 3, 141)
17번째 줄: 17번째 줄:


==비율 계산==
==비율 계산==
황금비 [[Φ|<math>\color{Blue}\varphi</math>(phi)]]는 [[선분]]을 <math>a, b</math> 길이로 둘로 나눌 때, 다음과 같은 값으로 정의된다.
:<math> \frac{a+b}{a} = \frac{a}{b} = \varphi</math>
:<math>\frac{a+b}{a} = \frac{a}{b} = \varphi</math>
 
이 때,
:<math>\frac{a+b}{a} = 1 + \frac{b}{a} = 1 + \frac{1}{\varphi}</math>
:<math>\left(\frac{a}{b}\right)^2 = \frac{a}{b} + 1 \qquad\qquad(*)</math>
 
:<math> 1 + \frac{1}{\varphi} = \varphi</math>
 
:<math>\varphi + 1 = \varphi^2</math>


가 성립하고, <math>\frac{a}{b} = \varphi </math>를 대입하면
:<math>{\varphi}^2 - \varphi - 1 = 0.</math>


:<math>\varphi^2=\varphi+1\,</math>
:<math>\varphi = \frac{1 + \sqrt{5}}{2} = 1.61803\,39887\dots</math>
라는 [[이차방정식]]이 나오고, <math>\varphi</math>는 이 방정식의 두 근 중 양수 근이 된다.
:<math>\varphi^2-\varphi-1=0</math>
:<math>\varphi={{-b\pm\sqrt{b^2-4ac}}\over{2a}}</math>  ([[근의 공식]])
:<math>={{-(-1)\pm\sqrt{(-1)^2-4\cdot1\cdot(-1)}}\over{2}}</math>
:<math>={{1\pm\sqrt{1+4}}\over{2}}</math>
:<math>={{1\pm\sqrt{5}}\over{2}}</math>


==[[연분수]] 표현==
==[[연분수]] 표현==

2018년 7월 1일 (일) 11:26 기준 최신판

1 개요[ | ]

golden ratio, golden mean, golden section, extreme and mean ratio, medial section, divine proportion, divine section, golden proportion, golden cut, golden number
黃金, 黃金分割
황금비, 황금 분할
  • 주어진 길이를 가장 이상적으로 둘로 나누는 비
  • 흔히, 인간이 인식하기에 가장 균형적이고 이상적으로 보인다고 하는 비율
  • 정오각형의 한 변의 길이와 대각선의 길이의 비
  • (황금분할) 황금비로 선분 면 등으 분할하는 것
  • 어떠한 선으로 이등분하여 한쪽의 평방을 다른쪽 전체의 면적과 같도록 하는 분할
  • 기호: 피 ( [math]\displaystyle{ \varphi }[/math] 또는 [math]\displaystyle{ \phi }[/math] )
  • 약 1.618인 무리수
  • 초기 연구자는 유클리드(원론 3, 141)

 

 

2 비율 계산[ | ]

[math]\displaystyle{ \frac{a+b}{a} = \frac{a}{b} = \varphi }[/math]
[math]\displaystyle{ \frac{a+b}{a} = 1 + \frac{b}{a} = 1 + \frac{1}{\varphi} }[/math]
[math]\displaystyle{ 1 + \frac{1}{\varphi} = \varphi }[/math]
[math]\displaystyle{ \varphi + 1 = \varphi^2 }[/math]
[math]\displaystyle{ {\varphi}^2 - \varphi - 1 = 0. }[/math]
[math]\displaystyle{ \varphi = \frac{1 + \sqrt{5}}{2} = 1.61803\,39887\dots }[/math]

3 연분수 표현[ | ]

[math]\displaystyle{ 1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{...}}}}=\varphi }[/math]

4 다중근호 표현[ | ]

[math]\displaystyle{ \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1...}}}}}=\varphi }[/math]

5 같이 보기[ | ]

6 참고[ | ]

http://terms.naver.com/entry.nhn?docId=933762&cid=43667&categoryId=43667

문서 댓글 ({{ doc_comments.length }})
{{ comment.name }} {{ comment.created | snstime }}